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Abstract
Two non-ideal, multiphase chemical reaction equilibrium algorithms are presented.

An approach to multiphase equilibrium calculations due to Abdel-Ghani et al. [1, 2] was
modified to include reaction equilibrium, exploiting two proposals by Michelsen [3,4].  In
both algorithms, nested processes are used with an inner loop treating the phases as ideal
solutions and an outer loop updating non-ideal parts of the models.  Both of the algorithms
were initiated with a number of phases which was reduced in the outer loop by combining
phases as they approach the same composition and density.  Initiation strategies for phase
amounts and compositions are presented.

Introduction

There is an extensive literature on phase and chemical equilibria calculations, most of

which concentrates on ideal gas systems with a possibility of pure condensed, or solid,

phases.  Non-ideal systems have been a concern, but not a focus, in the computational

aspects of chemical equilibria until recently.  Zeleznik and Gordon [5] reviewed methods

available prior to 1968, van Zeggeren and Storey [6] published the first monograph

dedicated to this area, and Smith [7] wrote an additional review of the material just prior to

Smith and Missen’s [8] publication of a second monograph dedicated to chemical and phase

equilibria calculations.  Additional reviews include those by Seider et al. [9], Mather

[10].and Seider and Widagdo [11].

The two papers closest to ours in intent are by Castier et al. [12] and Gupta et al.

[13].  Both present methods for computing reaction equilibrium in non-ideal multiphase

systems with more than one phase described by the same model.  Determining a correct

equilibrium when phases can split due to internal instability is a significant problem [14].

Both Castier et al. and Gupta et al. make use of a test of the stability of equilibrium that was

proposed by Michelsen [15].  Castier et al. begin with a small number of phases, compute

the reaction and phase equilibrium, test stability with respect to the addition of a new phase,

then recalculate the equilibrium with an increased number of phases if an additional phase is
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required.  The process continues until a stable solution is reached.  The steps during which

stability is tested require iterative computations, with a number of trial phases covering the

composition space as starting points in searching for alternative equilibrium phases.  Gupta

et al. begin with the maximum number of phases anticipated at equilibrium.  Michelsen's test

is used during the solution process in determining which of the phases initiated remains in

the solution.

Basic issues in structuring calculation methods arise in the handling of the

stoichiometry or mass conservation equations, the way the equilibrium criteria are posed, the

form used for the chemical potential models and the choice of independent variables in the

computations themselves.  The C species in a reacting mixture are possibly distributed

through π phases with molar amounts n i C jij ; , : ,= =1 1L Lπ .  The jth phase has mole

fractions xij  and total amount β j .  The total moles of species i in all the phases is denoted

by Ni , which can be calculated in two ways; i.e.,

N n xi ij
j

j ij
j

≡ =
= =
∑ ∑

1 1

π π
β (1)

Any chemical reactions can cause the total moles of the individual species to change but

linear constraints (typically the equations representing conservation of the elements) must be

obeyed.  These constraints are written;

AN b 0− = (2)

or, A N 0∆ = (3)

where ∆N  is the difference between any two set of mole numbers that satisfy the constraints

or, more particularly, ∆N N No= − , where No is a reference or initial set.  The k

components of vector b are constants determined by the content of the equilibrium system:

i.e., b ANo= .  There are M linear constraint equations and the matrix A has elements

a k M i Ckj ; , : ,= =1 1L L .  We assume that any redundant equations have been eliminated
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from equation (2) and that the number of species is at least equal to the number of constraint

equations; i.e., C M≥ .

An alternative way to represent mass conservation is through chemical reactions and

reaction extents.  In this approach the mole numbers are tracked through a parametric

solution of equation (3) in the form;

∆N N No= − = νξνξ (4)

where νik i C k R; , , : , ,= =1 1L L  is a matrix of stoichiometric coefficients and

ξk k R; , ,= 1 L  is a vector of reaction extents.  The number of linearly independent

reactions, R, is equal to C M−  given the assumption that there are no redundant equations

in (2).  The reaction coefficients can be found as solutions of:

A 0ν = (5)

Smith and Missen [8] provide further analysis of these approaches to stoichiometry.

The equilibrium criteria are well known but must be stated carefully in calculations

on multiphase systems where the number of equilibrium phases must be determined in the

computations.  At equilibrium, the chemical potential of a species i must have the same value

in every phase actually present.  In multiphase computations, some phases postulated may

not actually be present at equilibrium.  Michelsen [15] developed a "stability" test for phases

not present at equilibrium based on the Gibbs tangent plane criterion.  Equilibrium and

stability can be expressed compactly by the relation:

µ µij j iD− = $ (6)

where Dj ≥ 0  and is zero for phases present.  When these equations are satisfied, the

variable, Dj , has a geometric interpretation as the minimum distance that the jth free energy

surface lies above the common tangent plane that defines the equilibrium.

Reaction equilibrium criteria are super-imposed on the phase equilibrium and stability

criteria in equation (6).  These can be expressed in two equivalent ways.  The first involves a
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set of Lagrangian multipliers λk k M; , ,= 1 L  that are introduced when the Gibbs free

energy is minized under the constraints of equation (2).  That is;

$µ λ= RTAT , or, $µ λi ki k
k

M
RT a=

=
∑

1
(7)

The alternative expression uses the stoichiometric coefficients in the reaction equations;

νν µµT $ = 0 ; or, ν µik i
i

C
$

=
∑ =

1
0 (8)

In the calculations reported here, all the phase models are based on the same

equation of state.  Furthermore, all the phases are mixed phases and all components are

constituents of every potential phase.  The chemical potential of the ith component in phase j

is written in terms of the fugacity, then the mole fraction and fugacity coefficient;

( )µ µ µ φij i ij i ij ijRT f RT x P= + = +0 0ln ln (9)

where µi
0 is the standard state chemical potential of i and is the same in all the phases.  The

computation of equilibrium and stability together is facilitated by introducing a composition

variable equivalent to a mole fraction before normalizing, Xij .  In terms of this variable,

equation (9) can be written;

( )µ µ φij ij
i

C

i ij ijRT X RT X RT P+ = + +
=
∑ln ln ln

1

0 (10)

or, ( )µ µ φij j i ij ijD RT X RT P− = + +0 ln ln ;   with, D RT Xj ij
i

C
≡ −

=
∑ln

1
(11)

and serves the purpose of the "minimum tangent plane distance" in the Michelsen [15]

stability test.  All the necessary equilibrium and stability criteria are met when Xij  and phase

amounts are found that satisfy the mass balance constraints of equation (2), the phase

equilibrium criteria in equation (6), and the reaction equilibria criteria in equation (7) or

equation (8).
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Computational Algorithms

Reaction equilibrium computational methods are routinely classified as

"Stoichiometric" if reaction extents and equation (8) are employed to keep track of the

stoichiometry and "Non-Stoichiometric" if Lagrangian multipliers and equation (7) are

employed (Smith and Missen [8]).  In this paper, we present adaptations of two algorithms

recently proposed by Michelsen [3,4] for systems potentially containing many ideal phases.

One of the Michelsen algorithms [3] is "Non-Stoichiometric" and the other [4] is

"Stoichiometric".  The adaptations are in the methods for dealing with non-ideal phases

described by equations of state and in details of handling the equilibrium equations.

We use a nested approach in both algorithms described here.  In an inner loop, the

compositional dependence of fugacity coefficients is ignored and phase amounts and

compositions that satisfy all the equations are found.  Then the fugacity coefficients are

updated in an outer loop and the process is repeated until outer loop convergence is

obtained.

Stoichiometric Algorithm.  The approach to mulitphase equilibrium computations of

Abdel-Ghani et al. [1, 2] is used.  The common chemical potential (hence, fugacity) for

substance i in the coexisting phases is taken as a weighted average; i.e.,

$µ β µ β
π π

i j ij
j

j
j

=










= =
∑ ∑

1 1
;                  or, ln $ lnf fi j ij

j
j

j
=











= =
∑ ∑β β
π π

1 1
(12)

There is no particular composition associated with this average chemical potential and

fugacity, but in these calculations of phase and reaction equilibria we have found it

convenient to to write;

$ $ $f x Pi i i= φ (13)

Note that the product $ $xi iφ  is defined through this equation.  Note also that phases present in

zero amount (and in which the chemical potentials need not equal the chemical potentials in

the other phases) do not contribute to the weighted sums.  Also, the phase amounts do not
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necessarily sum to unity and their sum may change as chemical reactions proceed and alter

the total number of moles in the system.

Phase equilibrium K factors are defined using the average fugacity rather than the

fugacity in any one of the coexisting phases.  This definition yields;

( )X x K xij i ij i ij i= =$ / $ $φ φ (14)

The usual mass balances permit solution for the Xij  in terms of the phase amounts, giving;

X K N Eij ij i i= / ;      where, E Ki ik k
k

≡
=
∑ β
π

1
(15)

The $xi  variables have dropped out of these equations and could have been fixed arbitrarily,

however the choice $x Ni i=  is one way to provide a convenient scaling for the equations.

Inner Loop Calculations.   With a similar formulation (but differing in several details),

Michelsen [4] showed that the stability, phase equilibrium and reaction equilibrium criteria

are obtained as the minimum point of a convex function.  The convexity of the function is a

crucial property since it assures uniqueness of the minimum and serves as a guide in the

development of solution procedures.  The comparable function in our formulation is;

( )Q N RT N P Ej
j

i i i i i
i

C
= + + − −

= =
∑ ∑β µ φ
π

1

0

1
1/ ln $ ln (16)

The function Q is minimized with respect to the phase amounts (which must be non-

negative) and the reaction extents.  The minimum point is characterized by

( )h Q N K E Xj j i ij i
i

C

ij
i

C j

j
≡ = − = −

= >
> =



= =

∑ ∑∂ ∂β
β
β

/ /
;

;
1 1

0 0

0 01 1
(17)

and, ( ) [ ]( )l Q RT N P Ek k ik i i i i ik i
i

C

i

C
≡ = + = =

==
∑∑∂ ∂ξ ν µ φ ν µ/ / ln $ / $0

11
0 (18)

Equation (17) with equations (12) and (14) assures that the chemical potentials within a

phase present in a non-zero amount are equal to the equilibrium values.  The inequality for
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phases in zero amount assures that the missing phase should not form.  Equation (18) is the

equation for reaction equilibrium using the stoichiometric formulation.

Equations (17) and (18) can be solved efficiently and safely by Newton-Raphson

iteration so long as precautions specified by Abdel-Ghani et al. [1,2] are observed.  When a

phase amount j is zero, (β j = 0 ), it is not included as a variable in any equation other than

hj = 0 .  The Newton step size is controlled to permit only one β j  to move from positive to

zero in a given iteration.  Negative values are never permitted.

The Jacobian elements in the Newton-Raphson process are;

∂ ∂β ∂β2

1
Q X X Nm j ij im i

i

C
/ /=

=
∑ ;      ∂ ∂ξ ∂ξ ν ν2

1
Q Nk s ik is i

i

C
/ /=

=
∑

∂ ∂β ∂ξ ν2

1
Q X Nj k ik ij i

i

C
/ /= −

=
∑ (19)

Outer Loop Calculations.  In the outer loop, the mole fractions are normalized, the

fugacities are all recalculated at the new compositions, then the Kij are updated in the outer

loop through the successive substitution relationship;

( )ln ln ln ln $( ) ( )K K f fij
k

ij
k

ij i j
+ = − − −1 θ (20)

with θ j j ij
i

C
D RT X≡ − = −

=
∑/ ln

1
(21)

Converged solutions from this process can include compositions of incipient phases, missing

from the equilibrium mixture, which can enter if the temperature, pressure or overall

composition is altered.  The variables θ j > 0  and Xij
i

C

=
∑

1
<1 indicate a kind of "distance" the

conditions must be moved before the phase would appear.

Non-Stoichiometric Algorithm.   In an extension of Michelsen's non-stoichiometric

algorithms for ideal phases [3], we treat non-normalized mole fractions as dependent
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variables determined by the Lagrangian multipliers.  Equations (6), (7) and (10) are

combined to give;

( )µ µ φ µ λij j i ij ij i ki k
k

M
D RT X RT P RT a− = + + = =

=
∑0

1
ln ln $ (22)

then solved for, ( )ln / lnX a RT Pij ki k i
k

M

ij= − −
=
∑ λ µ φ0

1
(23)

Inner Loop Calculations.   In the inner loop of these nested calculations, the fugacity

coefficients are regarded as independent of the phase compositions.  The independent

variables are the phase amounts (the β j ) and the Lagrangian multipliers (the λk ).  The

equations that must be satisfied are;

h Xj ij
i

C j

j
= −











= >
< =



=

∑
1

1
0 0

0 0

;

;

β
β

(24)

and the M linear mass balance constraints, written here as;

l b a Xk k ki j ij
ji

C
= − +











 =

==
∑∑ β
π

11
0 (25)

These equations are used to solve for M Lagrangian multipliers and π phase amounts by

Newton-Raphson iteration.  Care in handling phase amounts at the zero constraint is

necessary here, as in the "Stoichiometric" algorithm.  Also, no more than M phases can be

included in any one iteration to avoid having a singular Jacobian matrix.

The derivatives in the Jacobian matrix are;

∂ ∂λl a a Nk m ki mi i
i

C

/ =
=
∑

1
;  ∂ ∂β ∂ ∂λl h a Xk j j k ki ij

i

C

/ /= =
=
∑

1
;   ∂ ∂βh j n/ = 0 (26)

Outer Loop Calculations.  The purpose of the outer loop is simply to update the fugacity

coefficients to reflect the new phase compositions returned from the inner loop.  The

convergence criteria are the same as are used in the stoichiometric technique.
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Initiation.   A key step in the initiation is to determine which species are likely to be most

abundant at equilibrium.  In the stoichiometric procedure, linear programming is used to find

the minimum of the function;

( )G N RT Pi i
i

C
= +

=
∑ µ0

1
/ ln (27)

subject to the constraints that AN b=  and all of the Ni  are non-negative.  The Simplex

Method described in Chapter 10 of Fraleigh and Beauregard [16] is used.  The method

results in a solution with C M−  of the mole numbers zero, a reordering of the species and a

modified constraint equation;

[ ]A N I A
N

b*
2

reactant ** =






=

ξξ
(28)

In equation (28), the vector of mole numbers has been partitioned demonstrating that a set

of chemical reactions can be written immediately.  Those reactions are:

N
N

N
N

b

0

A

I
reactants

products

o
*

2=








 = + =









 +

−





νξνξ ξξ (29)

These equations identify the mole numbers of C M−  "product" species as identical with the

reaction extents and provide numerical values for the Ni
o .  This process for constructing the

chemical reactions taking place and the feed molar amounts reduces the likelihood of

catastrophic cancellation in calculating mole numbers of trace species.

Positive reaction extents are required in order for computations to proceed.  Initial

values, ξk
0 , are obtained from the reaction equilibrium equations (8), which, with the

reactions in equation (29), can be rewritten;

( ) ( )[ ]µ ξ ν µM k k ik i i
i

M
RT P b RT b P b+

=
+ = − +∑ ∑∑0 0 0

1
/ ln / / ln /* * * (30)
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This initialization uses the feed molar amounts of the first M (reactant) species to compute

mole fractions and treats the mixture as an ideal gas.  Given the initial ξk  values, all C of the

mole numbers are calculated from equation (29).  There is a possibility at this point that

some of the mole numbers of "reactant" species may become negative.  This can be avoided

by dividing all the initial ξk  by a constant factor.  Positive feed mole fractions for all species

are computed from z N Ni i k
k

C
0 0 0

1
=

=
∑/ .

Initial phase amounts and compositions that satisfy conservation of mass for C+1

phases are computed from;

( )β j
j

C j

z C C j C
=

+ =
+ ≤ ≤ +



 −

1 1 1

1 2 11
0
/ ;

/ ;

  

  
(31)

x

z j i C

z j C i j

z j C i j
ij

i

i

i

=
= ≤ ≤

+ ≤ ≤ + = −
≤ ≤ + ≠ −









0

0

0

1 1

0 99 0 01 2 1 1

0 01 2 1 1

;

. . ;

. ;

   ;   

   ;   

   ;   

(32)

The first of the phases is treated as a vapor, the others as liquids.

The non-stoichiometric procedure requires initial values for the M Lagrangian

multipliers and the π phase amounts.  The initial number of phases is set equal to the number

of constituents plus one and the compositions of each of these phases is found from equation

(32), using the feed composition for zi
0 .  Fugacity coefficients, φij

0 , are evaluated.  Then

linear programming is employed to minimize the function;

[ ]G n RT Pij i ij
i

C

j

C
= +

==

+
∑∑ µ φ0 0

11

1
/ ln (33)

subject to the linear constraints in equation (2), but treating each of the nij  as independent.

The A matrix, in this case, has dimension M by C(C+1).  The linear program returns only M

positive mole numbers containing all the mass, distributed through as many as M phases.
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These numbers are used as the phase amounts in the active phases at the start of the

calculations.  In addition, a reduced and reordered A matrix is obtained with a leading M-

dimensional identity matrix.  From this large A matrix, an A*  matrix with the dimensions as

in equation (28) can be set up.  The initial values of the M Lagrangian multipliers are found

from;

λ µ φi i ij ijRT x P i M= +0 0 0 1/ ln  ;  = , ,L (34)

where mole fractions xij
0 are included in case an initial phase contains more than one species.

Once the phase amounts and the Lagrangian multipliers have been initiated, all the

functions needed for updating and convergence of the inner loop can be evaluated.

Example

Space permits documenting the performance of the two algorithms in only one

example, a system that was examined by Castier et al. [12] and Gupta et al. [13].  Methanol

is produced from a mixture containing carbon monoxide, hydrogen, carbon dioxide and

water.  Also present are methane and normal octadecane as inert species.  Potential reactions

involving methane or octadecane conversion, such as steam reforming to carbon monoxide

and hydrogen, are prevented by adding equations to the linear constraints showing that the

two mole numbers are constants.  The total number of constraint equations is M = 5  and

the species count gives C = 7 .  The composition of the initial feed stream is shown in Table

1.  The SRK equation with conventional mixing rules is used as the thermodynamic model,

with ideal gas chemical potentials taken from [17].  The parameters used in the SRK model

are the same as in [12] and [13].

The computations, as we carried them out, required initiation of 8 phases with

chemical reactions that were dealt with through 2 reaction extents in the stoichiometric

method or 5 Lagrangian multipliers in the non-stoichiometric method.
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Iterations Methanol Reaction Reaction Vapour Aqueous HC

P (MPa) St. NSt. Produced Extent 1 Extent 2 Phase Phase Phase

0.1a 6 7 0.0000 3.86E-03 3.82E-05 0.9654 (0.0079)c 0.0347

0.5 7 7 0.0010 3.82E-03 1.02E-03 0.9346 (0.0410) 0.0654

1 8 11 0.0040 3.64E-03 4.00E-03 0.9292 (0.0840) 0.0708

2 10 13 0.0138 3.08E-03 1.38E-02 0.9223 (0.1824) 0.0777

4 12 14 0.0376 2.03E-03 3.76E-02 0.9068 (0.4348) 0.0932

6 13 15 0.0599 1.36E-03 5.99E-02 0.8858 (0.7367) 0.1142

8 18 17 0.0867 9.24E-04 8.67E-02 0.8111 0.0415 0.1474

10 25 22 0.1381 4.05E-04 1.38E-01 0.4899 0.2957 0.2145

10.13 25 21 0.1402 3.79E-04 1.40E-01 0.4740 0.3082 0.2178

12b 20 21 0.1553 1.64E-04 8.72E-03 0.3374 0.4133 0.2493

14 21 23 0.1601 8.51E-05 3.98E-03 0.2760 0.4552 0.2688

16 21 24 0.1620 5.07E-05 2.14E-03 0.2397 0.4755 0.2848

18 21 24 0.1629 3.28E-05 1.28E-03 0.2128 0.4876 0.2996

20 21 25 0.1634 2.25E-05 8.18E-04 0.1903 0.4956 0.3141

25 21 24 0.1639 1.04E-05 3.31E-04 0.1421 0.5078 0.3501

30 22 26 0.1640 5.65E-06 1.63E-04 0.0982 0.5147 0.3871

35 23 26 0.1641 3.40E-06 9.05E-05 0.0552 0.5194 0.4254

40 22 28 0.1641 2.20E-06 5.51E-05 0.0120 0.5227 0.4653

45 23 35 0.1642 1.64E-06 3.87E-05 (0.9794) 0.5295 0.4705

50 31 33 0.1642 1.29E-06 2.90E-05 (0.9554) 0.5370 0.4630

55 43 57 0.1642 1.05E-06 2.23E-05 (0.9358) 0.5437 0.4563

60 24 34 0.1642 8.58E-07 1.75E-05 0.5496 0.4504

65 23 28 0.1642 7.14E-07 1.39E-05 0.5550 0.4450
Feed -       CH4: 0.0214     CO: 0.1071          H2: 0.5286        CO2: 0.0571

CH3OH: 0.0000    H2O: 0.2143   C18H38: 0.0715

Temperature is 473.15 K and methane is inert in all runs.
a Subsequent Reactions are:  H2+CO2

ÂCO+H2O 3H2+CO2
ÂCH3OH+H2O

b Subsequent Reactions are:  CH3OHÂCO+2H2 CH3OH+H2OÂ 3H2+CO2
c Parenthesis indicate an incipient phase, the number being the sum of the mole fractions.

Table 1  -  Methanol Synthesis Example.
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Table 1 summarizes the results of the computations at a temperature of 200 oC and

over a pressure range from 0.1 MPa to 65 MPa.  Pressure favors conversion of CO and CO2

to methanol and virtually complete conversion is obtained at pressures above 30 MPa (which

is a typical pressure at which methanol manufacture has been carried out).

The model used shows that three phases persist over the pressure range between

roughly 8 MPa and 40 MPa.  The liquid splitting is largely due to the presence of both water

and octadecane in the mixture.  At lower pressures, the water-rich liquid does not appear

and at higher pressures, the lighter compounds such as hydrogen and methane dissolve in the

two liquids and the light phase (which we refer to as a vapor) is absorbed.

The number of phases, which is initiated in this example at 8, is reduced by

combining phases as they become identical.  However, phases in zero amount but with mole

fractions different from the coexisting phases are not deleted.  The quantity Xij∑ , which is

less than 1 for these "incipient" phases, is given in parentheses in Table 1 in place of the

phase amount.

The initiation schemes described permitted the two algorithms to arrive at the same

result at all the pressures in the table.

In general, the non-stoichiometric technique was more difficult to control than the

stoichiometric technique, at least in completing this example.  In some cases, the inner-loop

Newton-Raphson routine did not converge or produced large changes in the Lagrangian

multipliers between iterations, sometimes on a scale that caused numerical overflow.  These

difficulties, and others, were easily avoided by using two separate damping factors:  one

factor to ensure that the Lagrangian multipliers did not change by more than 10% per

iteration and another factor to ensure that, at most, only one of the phase fractions became

zero during a single iteration.  Phases that were not active at the start of the Newton-

Raphson procedure were added if X ij
i

C

∑  became greater than unity.  The addition of a

phase was permitted only after the third iteration, only one phase was added at a time,
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according to which X ij
i

C

∑  was larger, and the phase was introduced with an amount

β j = −10 6 .

The stoichiometric technique, once initialized as described with reaction extents that

produced positive mole numbers for all species, was relatively trouble free.  The chemical

reactions that resulted from the linear programming step, depended on the specified

pressure, and are indicated in Table 1.

Iteration counts in the outer loops of the two algorithms are shown in the Table.

Inner loop iterations were typically 10-15 in the early stages, dropping to 3 later.  The initial

8 phases were reduced to 3 in the outer loop of the algorithms in relatively few iterations

and the total iteration count was not prohibitive at any pressure.  The temperature of 200 oC

is apparently not particularly close to any critical condition in these mixtures, or larger

iteration counts could be expected.  The maximum number of outer loop iterations occured

at 55 MPa, near the pressure where it became impossible to locate an incipient phase rich in

the light components.  The disappearance of an "incipient" phase occurs when the phase

becomes locally unstable, and this property is responsible for the high iteration count.

Conclusions

The two new algorithms proposed for phase and reaction equilibrium in non-ideal

systems make use of Michelsen's techniques for ideal phases [3,4] in nested successive-

substitution approaches.  The possibility of several mixed phases being present at equilibrium

is dealt with using the approach of Abdel-Ghani et al. [1, 2] which involves initiating the

calculations with a large number of phases rather than adding phases if indicated by stability

tests on converged solutions with fewer stages.

Iteration counts in the cases examined were not excessive.
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